Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662967

RESUMO

Streptomyces spp. are "nature's antibiotic factories" that produce valuable bioactive metabolites, such as the cytotoxic anthracycline polyketides. While the anthracyclines have hundreds of natural and chemically synthesized analogues, much of the chemical diversity stems from enzymatic modifications to the saccharide chains and, to a lesser extent, from alterations to the core scaffold. Previous work has resulted in the generation of a BioBricks synthetic biology toolbox in Streptomyces coelicolor M1152ΔmatAB that could produce aklavinone, 9-epi-aklavinone, auramycinone, and nogalamycinone. In this work, we extended the platform to generate oxidatively modified analogues via two crucial strategies. (i) We swapped the ketoreductase and first-ring cyclase enzymes for the aromatase cyclase from the mithramycin biosynthetic pathway in our polyketide synthase (PKS) cassettes to generate 2-hydroxylated analogues. (ii) Next, we engineered several multioxygenase cassettes to catalyze 11-hydroxylation, 1-hydroxylation, 10-hydroxylation, 10-decarboxylation, and 4-hydroxyl regioisomerization. We also developed improved plasmid vectors and S. coelicolor M1152ΔmatAB expression hosts to produce anthracyclinones. This work sets the stage for the combinatorial biosynthesis of bespoke anthracyclines using recombinant Streptomyces spp. hosts.

2.
Chembiochem ; 21(21): 3062-3066, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32557994

RESUMO

Nogalamycin is an anthracycline anti-cancer agent that intercalates into the DNA double helix. The binding is facilitated by two carbohydrate units, l-nogalose and l-nogalamine, that interact with the minor and major grooves of DNA, respectively. However, recent investigations have shown that nogalamycin biosynthesis proceeds through the attachment of l-rhodosamine (2''-deoxy-4''-epi-l-nogalamine) to the aglycone. Herein, we demonstrate that the Rieske enzyme SnoT catalyzes 2''-hydroxylation of l-rhodosamine as an initial post-glycosylation step. Furthermore, we establish that the reaction order continues with 2-5'' carbocyclization and 4'' epimerization by the non-heme iron and 2-oxoglutarate-dependent enzymes SnoK and SnoN, respectively. These late-stage tailoring steps are important for the bioactivity of nogalamycin due to involvement of the 2''- and 4''-hydroxy groups of l-nogalamine in hydrogen bonding interactions with DNA.


Assuntos
Aminas/metabolismo , Nogalamicina/biossíntese , Oxigenases/metabolismo , Aminas/química , Biocatálise , Glicosilação , Hidroxilação , Modelos Moleculares , Conformação Molecular , Nogalamicina/química
3.
FEBS J ; 287(14): 2998-3011, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31876382

RESUMO

Microbes are competent chemists that are able to generate thousands of chemically complex natural products with potent biological activities. The key to the formation of this chemical diversity has been the rapid evolution of secondary metabolism. Many enzymes residing on these metabolic pathways have acquired atypical catalytic properties in comparison with their counterparts found in primary metabolism. The biosynthetic pathway of the anthracycline nogalamycin contains two such proteins, SnoK and SnoN, belonging to nonheme iron and 2-oxoglutarate-dependent mono-oxygenases. In spite of structural similarity, the two proteins catalyze distinct chemical reactions; SnoK is a C2-C5″ carbocyclase, whereas SnoN catalyzes stereoinversion at the adjacent C4″ position. Here, we have identified four structural regions involved in the functional differentiation and generated 30 chimeric enzymes to probe catalysis. Our analyses indicate that the carbocyclase SnoK is the ancestral form of the enzyme from which SnoN has evolved to catalyze stereoinversion at the neighboring carbon. The critical step in the appearance of epimerization activity has likely been the insertion of three residues near the C-terminus, which allow repositioning of the substrate in front of the iron center. The loss of the original carbocyclization activity has then occurred with changes in four amino acids near the iron center that prohibit alignment of the substrate for the formation of the C2-C5″ bond. Our study provides detailed insights into the evolutionary processes that have enabled Streptomyces soil bacteria to become the major source of antibiotics and antiproliferative agents. ENZYMES: EC number 1.14.11.


Assuntos
Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Evolução Molecular , Engenharia Genética/métodos , Nogalamicina/biossíntese , Ferroproteínas não Heme/metabolismo , Streptomyces/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ferroproteínas não Heme/química , Ferroproteínas não Heme/genética , Conformação Proteica
4.
ACS Chem Biol ; 13(9): 2433-2437, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30114358

RESUMO

Carbohydrate moieties are essential for the biological activity of anthracycline anticancer agents such as nogalamycin, which contains l-nogalose and l-nogalamine units. The former of these is attached through a canonical O-glycosidic linkage, but the latter is connected via an unusual dual linkage composed of C-C and O-glycosidic bonds. In this work, we have utilized enzyme immobilization techniques and synthesized l-rhodosamine-thymidine diphosphate (TDP) from α-d-glucose-1-TDP using seven enzymes. In a second step, we assembled the dual linkage system by attaching the aminosugar to an anthracycline aglycone acceptor using the glycosyl transferase SnogD and the α-ketoglutarate dependent oxygenase SnoK. Furthermore, our work indicates that the auxiliary P450-type protein SnogN facilitating glycosylation is surprisingly associated with attachment of the neutral sugar l-nogalose rather than the aminosugar l-nogalamine in nogalamycin biosynthesis.


Assuntos
Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Enzimas Imobilizadas/metabolismo , Nogalamicina/análogos & derivados , Nogalamicina/metabolismo , Streptomyces/enzimologia , Amino Açúcares/metabolismo , Antraciclinas/metabolismo , Antibióticos Antineoplásicos/síntese química , Biocatálise , Glicosilação , Nogalamicina/síntese química , Streptomyces/metabolismo , Nucleotídeos de Timina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...